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Abstract

Computational methods for global/local analysis of structures which includes both uncou-

pled and coupled methods are described. In addition, global/local analysis methodology for

automatic refinement of incompatible global and local finite element models is developed. Rep-

resentative structural analysis problems are presented to demonstrate the global/local analysis

methods.

Introduction

The use of composite materials in the design of aircraft structures introduces analytical

complexity due to the nature of the material systems and their failure modes. Moreover, new

structural concepts introduce additional modeling complexity due to the details of material and

geometric discontinuities. Predicting the strength of these structural configurations requires an

accurate stress analysis capability. However, detailed analysis of complex aircraft structures

can severely tax even today's computing environment. Therefore, it is highly desirable to

utilize detailed modeling only where necessaryl Embedding local refinement in a single model of

the entire structure may lead to highly complex modeling due to the use of transition modeling

between highly-refined regions and regions with less refinement. In addition, transition modeling

typically introduces distorted elements into the finite element model which may adversely affect

the accuracy of the solution. Thus, global/10cal methods which use different idealizations in

different structural regions (i.e., global and local regions) have beenused to determine the

detailed response of structures. These global/local methods often reduce modeling complexity,

however, some of them still require at least some level of transition modeling between the highly-

refined and less-refined finite element :meshes (refs. 1 to 4). For the methods using transition

modeling, one-to-one nodal correspondence is required on the boundaries of the global and local

models. Such nodal correspondence will hereafter be referred to as nodal compatibility.

Global/local methods which do not require such nodal compatibility along common sub-

domain boundaries provide the desirable feature of modeling flexibility and eliminate the need
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for transition modeling. These methods fall into one of two categories. In the first category,

results from a relatively coarse model are interpolated and applied as boundary conditions (i. e.,

displacements or forces) on an independent detailed local model of the region of interest (see,

for example, refs. 5 and 6). Thus, methods in this category are considered uncoupled and are

advantageous when the region of interest is not known prior to or not adequately modeled in

the initial global analysis. However, typically no provision is made for interaction between the

global and local models.

In the second category, the detailed refinement is incorporated within the global model.

Methods in this category are considered coupled and provide modeling flexibility (i.e., they

permit independent modeling of the global and local regions) as well as a coupling of the global

and local analyses (i.e., they provide the necessary interaction between the global and local

models). Examples of coupled methods include domain decomposition and coupling techniques

which focus on the development of such methods for parallel computers (refs. 7 and 8). Other

methods use some form of multi-point constraints along the global and local boundary (refs. 9

and 10).

The purpose of this paper is to describe two methods, one in each of the previously discussed

categories, that have been developed for global/local analysis. These methods, which include

both uncoupled (ref. 11) and coupled (ref. 12) global/local methods, have been implemented

in a general-purpose finite element code, COMET (ref. 13). Both methods eliminate the need

for transition modeling and nodal compatibility across the common boundary between the lo-

cal and global models. The uncoupled global/local method uses surface spline interpolation to

determine the boundary conditions for the incompatible local model. The coupled global/local

method uses an independent function along the interface between the subdomains to couple the

incompatible global and local subdomains. In addition, an error detection and control strat-

egy has been combined with the coupled global/local analysis method to automatically refine

the independently discretized regions. The description of each of these global/local analysis

methods including their mathematical formulations is presented first. Then, the methods are

demonstrated on selected linear, static structural analysis applications.

Global/Local Analysis Methods

Global/local analysis procedures which determine the detailed response of structures using

different idealizations in specific regions are described in this section. Two computational meth-

ods are described: (1) an uncoupled global/local analysis method and (2) a coupled global/local

analysis method. In addition, an error detection and control strategy (refs. 14 and 15) is de-

scribed and is combined with the coupled global/local analysis method in order to automatically

refine selected independently discretized structural regions. All methods have been implemented

in a common structural analysis framework (refs. 13 and 17).

Uncoupled Global/Local Method

The uncoupled global/local analysis method was developed in detail in reference 11 and

is briefly described herein. The method employs spline interpolation functions which satisfy

the linear plate bending equation to determine "boundary conditions" for the local model.

A schematic which describes the uncoupled global/local analysis method is shown in figure

1. The global analysis is performed first. The interpolation region encompassing the critical
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region is specified. A surfacespline interpolation function is evaluated at every node in the
interpolation region. The displacement field from the global analysis is used to compute the
unknown coefficientsof the surfacespline flmction. An independent,more refined, local model
is generatedwithin the previously-defined interpolation region. The interpolated displacement
field is usedto producea local displacementfield which is applied asa "boundary condition" on
the boundary of the local model. Then, an independent, two-dimensional local finite element
analysis is performed.

This method canbe usedto determinelocal two-dimensionalstressstatesfor specificstruc-
tural regions using independent, refined local models which exploit information provided by
less-refinedglobal models. The method does not require knowledgeof the regions requiring
local detailed stressanalysis in advance. However,the analyst may be able to anticipate which
regions will experiencehigh stressesand the global model can be developedwith this knowl-
edgein mind. In addition, transition modeling is eliminated sinceindependent global and local
models are used.

One of the key componentsof this global/local method is the interpolation of the global
solution to determine boundary conditions for the local model. The interpolation is performed
using a surfacespline approach.A surfacespline is usedto interpolate afunction of two variables
and removesthe restriction of singlevariable schemeswhich require a rectangular array of grid
points. The derivation of the surfacespline interpolation function usedherein is basedon the
classicalplate bending equation

DV%(x, U)= q(x,y). (1)

where D is the flexural rigidity, q(x, y) is the transverse loading and w(x, y) is the transverse
1'1

deflection of the plate. It ia aCssumed that q(x, y) - _7_i=a ...2.i_ 6(x - xi y - yi), where n161rD

is the number of nodes in the interpolation region, p/ is the applied point load at the i th

node in the region and 5(x - xi, y - yi) is the two-dimensional Dirac delta function such that

6(x - xi,y - yi) = 1, when x = xi and y - yi; and 5(x - xi,y - Yi) = 0, otherwise. The

interpolation function, w(x, y), may be written ms

w(x, y) = ao + alx + a2y + asx 2 + a4xy + asy 2 + a6 xs + azx2y+

asxy 2 + a9y z + _ Fir_ ln(r_)

i=1

(2)

where

= (x - + (yF i (3)

Fi = ...£i._ and xi,yi are the coordinates of the i th node in the interpolation region. The
16*rD'

2 ln(r2), in equation (2) is the fimdamental solution of equation (1) forlogarithmic term, r i

a unit point load at the i th node in the interpolation region. This type of interpolation was

first used by Harder and Desmarais (ref. 16) to interpolate pressure loads on idealized wing

structures. For that application, only three constants a0, al, and a2 were used. In reference 11,

a complete cubic polynomial was used for general structural applications. The n + 10 unknown

spline interpolation coefficients (a0, al, as,. • •, ag, F,) are determined by _valuating equation (2)



at n nodes and solving the resulting equations along with the following additional ten constraint

equations:

n 71

EF, =0 =0
i_-I i-----1

B

i=1 i-----1

n n

i= 1 i= I

n n

i=l i=1

i=1 i=1

(4)

These constraint equations are used to prevent equation (2) fl'om becoming unbounded for large

values of x and y. The matrix equation is formed by combining equations (2) and (4), namely

where P is an n x 10 submatrix with the i a' row expressed as

Pi = [1 xi yi xi 2 xiyi yi 2 xi 3 xi2yi X, iYi 2 yi 3 j ,

0 is a 10 x 10 null submatrix, Y2 is an n x n submatrix with its elements given by

{": ln(r'_j), i ¢ jftij = r ij O, i = j
i,j = 1,2,...;n

The subvectors a and F contain the unknown coefficients of the interpolation function, and the

subvector w contains the generalized displacement field from the interpolation region in the

global model. The second set of the equations in equation (5), PTF = 0, is the matrix form of

the constraint equations defined by equations (4). Upon solving equation (5) for the coefficients

(ao, al, a2,... ,ag, Fj), equation (2) is evaluated at the i nodes along the global/local interface

boundary to obtain the interpolated data at the boundary nodes of the local model and is given

by

wg/t(xi, Yi) = ao + alxi + a2Yi + a3xi 2 + a4xiyi + asyi 2 + a6xi 3 -t- aT,xi2Yi+

asxiyi2 + agYia + E Fi'ri_ ln(r_/); i= 1,2,...,/. (6)
j=l



If a boundary node of the local model coincides with a node in the interpolation region of the

global model, this node corresponds to a "knot" in the surface spline and thus, the interpolated

value is exact. Although equation (6) is derived from the classical plate bending equation,

it may be used to interpolate each displacement component u, v, and w, independently. The

rotations 8x, By, and 8_ are interpolated (using eq. (6)) from the rotations in the interpolation

region in the global model instead of differentiating the out-of-plane-deflection, w, to obtain the

rotations (e.g., w,x).

Guidelines for the use of the uncoupled global/local method are presented in reference

11. In this reference, it was shown that the local model boundary should be outside the local

gradient in order to obtain smooth stresses across the global/local boundary. However, even if

this requirement is not satisfied, the method provides insight of the local behavior. While the

method permits simpler modeling than embedding local refinement in a single model analysis,

it does not take into account any interaction between the global and local models. Thus, an

alternative method which couples the global and local models together has been developed.

Coupled Global/Local Analysis Method

This coupled global/local analysis method (see fig. 2) was developed in detail in reference 12

and is briefly described herein. In this coupled method, the incompatible global and local models

are coupled using an independent function along the interface between subdomains. The global

and local subdomains are discretized by independent finite element meshes. The interface, S,

(see fig. 3) between the subdomains is discretized independently. The displacement field along

the interface is expressed in terms of the generalized displacements along the interace.

The modeling flexibility provided by such a method allows an analyst to incorporate local

changes in structural design (e.g., hole size and shape) by interchanging different local models

within the same global model. Moreover, the method may also be advantageous when combined

with adaptive refinement strategies. The use of such nodally incompatible models also minimizes

mesh distortion by avoiding skewed elements otherwise necessary in transition modeling.

The method described herein may generally be applied to an arbitrary number of indepen-

dently modeled regions. However, in the following discussion, the mathematical formulation

will be described in terms of two regions and a multi-segmented interface. A two-dimensional

domain fl is modeled as two independently discretized subdomains, fll and _2, as shown in

figure 3. The interface, S, is modeled as semi-independent straight line segments which conform

to the configuration but not the discretization of either of the subdomains. Each segment of

the interface, S, is discretized as a mesh of evenly spaced "pseudo-nodes." In this paper, the

following notation conventions are used. The superscript, i, is associated with the interface

degrees of freedom of a subdomain, and the superscript, o, is associated with the other degrees

of freedom, not on the interface. The subscript, j, denotes the subdomain (e.g., j = 1, 2 for the

model in fig. 3). Along the k th segment of the interface, S, there are mkj interface nodes for

subdomain j and nk pseudo-nodes on the intel_face, S. Furthermore, it is assumed that each

node has p degrees of freedom so that there are pmkj degrees of freedom for the interface nodes

of the subdomain j and pnk degrees of freedom for the interface, 5'.

While three different interface formulations were examined in reference 12, only one is

presented herein, namely, the hybrid variational formulation. The displacement field, v, along

segment k of the interface may be written as
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v = Tq_ (7)

where , T is a p x pnk matrix containing the interpolating functions, and qs is a vector of pnk

generalized displacements associated with the nk interface pseudo-nodes. The specific form of T

depends on the type of function chosen to describe the displacement vector, v, and the number

of evenly spaced pseudo-nodes, nk, selected along segment k of the interface, S. In reference 12,

three different functions were examined: linear, quadratic and cubic splines. The cubic spline is

used in this study. Equation (7) is assumed to be valid along each segment (segments AB and

BC in fig. 3); at the interface corner (point B in fig. 3), the values from each interface segment
are constrained to be the same.

The hybrid variational formulation uses an integral form for the compatibility between the

interface and the subdomains. The augmented total potential energy is defined as

II = Ha, +IIn, +fs  (v -ul)ds+fsA_'(v - u2)ds (8)

where X j is a vector of Lagrange multipliers and uj is the displacement vector along the interface

for the subdomain j. The total potential energy of subdomain j, ]'I_, is given by

1 T

1-Ifti -- _qj Kjqj - q_fj

[ ['] ['j1 iT oW K} i K} °] qj _ Lq}T qJ j fj j 1,2 (9)
2 [ qy qJ j I(_ i K; °j n/ f;

where the generalized displacement vectors qj, generalized force vectors f j, and the stiffness

matrices K j, are partitioned into subvectors and submatrices corresponding to interface nodes

and other (non-interface) nodes.

The constraint integrals in equation (8) are added to the functional to enforce, in the

variationalsense, continuity of displacements across the interface. Equation (8) corresponds to

the "double layer interface" or "frame" method of the hybrid variational principal (ref. 18). In

this formulation, the Lagrange multipliers, A, are assumed independently at the interface for

each element, and the displacement vector, v, is assumed independently on the interface, S.

Assuming that the displacement boundary conditions are satisfied, the stationary condition

for the total potential energy for arbitrary u in the subdomains, arbitrary v on the interface,

S, and arbitrary A on the interface parts of the subdomains, results in the following EuIer

equations associated with the interface

)kj = (an)j; j = 1, 2
5H = 0 :=_ A1 + A2 = 0 on S (I0)

uj =v; j = 1,2

These equations are in addition to the usual Euler equations which satisfy the equilibrium

equations, traction boundary conditions, and the interelement traction continuity. Thus, Aj

represents the tractions on the interface and the sum of the tractions across the interface is zero

(i.e., equilibrium is maintained across the interface). The dispacements, u j, along the interface



of the subdomains isexpressedin terms of unknown nodal displacements,q_, as uj = Njq_, and,

the Lagrange multipliers, X j, are expressed in terms of unknown coefficients, aj, as ,kj = Rjotj,

where Nj and Rj are matrices of interpolation functions. The interpolation functions in the

matrix Rj are taken to be constants for linear elements and linear for quadratic elements.

Substituting these assumptions into equation (8) and taking the first variation of the potential

energy with respect to the independent variables, q_, qy, q,, and or j, and setting it to zero yields

the following system of equations:

K_ i K_ ° 0 0 0 M1 0

K_i ooK 1 0 0 0 0 0
0 0 K ii io2 K2 0 0 M2

0 0 K_' K_ ° 0 0 0

0 0 0 0 0 Ga G2

M: 0 0 0 G_ 0 0

0 0 M_ 0 G_ 0 0

q_

q_

q_

qs

0_i

O_ 2 .

fl

0

0

0

(II)

where Mj and Gj are integrals on the interface defined in terms of R j, T, and Nj as

M./=-/s T fs ; (12)NjRjds and Gj = TTRjds j = 1, 2

Adaptive Global/Local Analysis Procedure

The adaptive global/local analysis procedure, described by figure 4, is a strategy for auto-

matically refining selected, independently discretized regions of a structure within the context

of a linear static analysis. In this method, the error detection and control strategy presented in

references 14 and 15 and summarized herein is combined with the coupled global/local method

previously described.

Initially, the local and global subdomains are identified and independently discretized. A

linear stress analysis is performed using the coupled global/local method. Once a displacement

solution has been obtained for the coupled system, the two models are again treated as inde-

pendent for post-processing. Refinement indicators, based on stress resultants smoothed only

within a global or local subdomain, are evaluated, and each subdomain is remeshed as needed.

If no elements in either model require refining, the solution strategy stops and reports that so-

lution convergence has been achieved. If either or both models change, a new mesh (or meshes)

is (are) generated and a new coupled solution is determined. The global and local models are

parametrically generated using the high-level command language in COMET such that auto-

matic refinement of the models is accomplished by automatically changing the discretization

parameters. The strategy continues iteratively until either convergence to a user-specified er-

ror tolerance is achieved oi" another user-specified termination criterion is met (e.g:, maximum

number of mesh iterations or maximum execution time).

The error detection and control strateg:¢ includes the definition of error and refinement

indicators and the development of a mesh refinement strategy. While several error indicators

were considered initially, only two proved to be useful in the work presented in references 14

and 15. The first is an adaptation of the energy norm of the error; the second is based on the
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standard deviation in the stressresultants at elementnodes. The first error indicator is usedin
the present work and is summarizedherein.

The energy norm of the error as proposed by Zienkiewicz and Zhu (ref. 19) has been
adapted to plate and shell problems. For the k th element, the energy norm of the errorl iIekl[g,

is defined by

"= - Ck (Sk - S[.)dae = AS,t.C k ASkdgl_ (13)

* denotes smoothed values and

where

I! ll (15)
e,. - ,Itolv n,ele '

(lu'[{ is tile energy norm of the curre!lt finite element solution over each subdomain, [{e[{E is the

energy norm of the error in each subdomain and is defined as the sum of the elemental values,

Ilekllv., and net_ is the total nmnber of elements. At the start of a specific analysis, the user

must specify a value for the percent error in the energy norm which will be acceptable for the

given analysis; this user-specified tolerance is denoted 0,or. Thus, when (k is less than unity

for an element or patch of elements, refinement must occur; when (k is greater than unity for

a patch of elements, the patch may be "fused" into a patch containing fewer elements. The

"fusion" of elements has not been included ,as part of the error control strategy in this work.

The error indicator discussed herein requires the definition of a smoothed stress resultant

field (which is generally ax_ailable in most large-scale stru,'tmal analysis codes) as ml approxi-

mation to the exact stress resultant field. For simplicity, simple nodal averaging has been used

where Sk is a vector of stress resultant components (where an

a _ denotes discrete finite element values); and e is the constitutive matrix that relates stress

resultants to reference surface strain components.

As an integrated quantity, the energy norm of the error requires either specific element data

(i.e., the element shape functions) or an element-independent generalization. This implemen-

tation provides an element-independent generalization which allows for the decoupling of the

error analysis from other element-specific functions. The distribution of the difference between

the smoothed and the discrete values of the stress resultants, AS, over each element is assumed

to be described by Lagrangian shape flmctions. This assumption allows for the evaluation of an

element-independent error indicator and provides a common basis for the evaluation of different

element types but does not ignore all element-specific features in that discrete element stress

resultants are calculated using features of the specific element.

The automatic refinement strategy is b,ased on the local refinement indicators; elements

needing to be refined are identified using the local refinement indicator (see ref. 19), {k, defined

by

(_: -- (14)
Ile llE



to produce the smoothed solutions for the example cited herein. For all nodes, smoothed stress

resultants are given by

S" ,,_j S_ (16)
rte 1=1

where S* is the smoothed stress component _ at node j, n_ is the number of elements directly
c_j

tl

connected to node j, and S_. is the discrete stress component o_ at node j from element I. At
• • J , • •

geometric and materaal dlscontmuatles, the stresses in the same geometric plane or of the same

material are smoothed separately. It should be noted that any smoothing algorithm may be used

since obtaining the smoothed solution is a separate part of the error detection strategy. When

calculating the error and the refinement indicators, it is assumed that a smoothed solution is
available.

Automatic mesh refinement may take several forms and need not be fully adaptive. A

flllly adaptive strategy will refine only those elements identified by the refinement indicators as

elements requiring refinement. Automatic mesh refinement encompasses a range of refinement

techniques and includes any mesh refinement technique which can be performed with minimal

user intervention and which can be performed automatically by the structural analysis software.

The present work (as in references 14 and 15), employs uniform and quasi-uniform refinement

schemes implemented through a high-level command language facility in COMET.

Uniform refinement methods may be global but are best employed on parameterized finite

element models so that only portions of the mesh will be refined and sophisticated data struc-

tures are not required. This type of refinement is denoted quasi-uniform refinement. Uniform

and quasi-uniform refinements will tend to over-refine the finite element model. The cost per

analysis of using such refinement is therefore generally higher than the cost of using a fully

adaptive refinement technique. Within the context of a general-purpose code, however, a high-

level refinement technique which is easily implemented, requires no complex data structures,

and little or no modification to existing software, may well be the technique of choice for many

analysts.

Applications

The effectiveness of the global/local analysis methods described in the previous section

is demonstrated by determining the response of two structural analysis problems. First, a

graphite-epoxy blade-stiffened panel demonstlTates the uncoupled global/local analysis method

on a representative aircraft subcomponent with characteristics which often require a global/local

analysis capability. These characteristics include a discontinuity, eccentric loading, large dis-

placements, large stress gradients, high in-plane loading and a brittle material system. Sec-

ond, an orthotropic plate with a central crack demonstrates the coupled global/local analysis

method. In addition, the plate with a central crack demonstrates the effectiveness of the adap-

tive global/local analysis procedure. This problem is characterized by a stress singularity at

the crack tips which presents a challenge for both the global/local method and the adaptive

procedure.



Blade-Stiffened Panel with Discontinuous Stiffener

An uncoupled global/local analysis of a composite panel with a discontinuous stiffener was

presented in reference 11 and is summarized herein. A linear stress analysis of a flat, blade-

stiffened, graphite-epoxy panel loaded in axial compression is performed. The overall panel

length is 30 in., the overall width is 11.5 in., the stiffener spacing is 4.5 in., the stiffener height

is 1.4 in., and the cutout radius is 1 in. The cross section of the three blade-shaped stiffeners

is identical. The loading is uniform axial compression in the x-direction. The loaded ends of

the panel are clamped and the other sides are free. The material system used for the panel is

T300/5208 graphite-epoxy unidirectional tapes with a nominal ply thickness of 0.0055 in. The

panel skin is a 25-ply symmetric laminate ([-f-45/02/T 45/0a/=[= 45/03/=F 45/00] s) and the

blade stiffeners are 24-ply symmetric laminates ([=t=45/010]s).

Based on the results fl'om a coarse global model analysis, two local regions are considered:

one near the cutout, and one at the skin-stiffener interface near the edge of the cutout. A four-

node quadrilateral shell element (ref. 20) was used in the global and local analyses. This element.

is based on a displacement fornmlation and includes rotations about the outward normal axis.

The coarse global model has 2316 active degrees of fleedom. The local models of tile region

around the cutout and the skin-stiffener interface have 3456 and 462 active degrees of fl'eedom,

respectively. The boundary conditions for both local analyses were obtained using data from

the coarse global model analysis. Two interpolation regions were used for each of the local

analyses. The first interpolation region, specified in the plane of the panel skin, is used to obtain

boundary conditions on the local model boundary of the panel skin. The second interpolation

region, specified in the plane of tile stiffener, is used to obtain boundary conditions on the local

model boundary of the stiffener. The boundary conditions for the panel skin and the stiffener

were obtained independently. The displacements and rotations at the skin-stiffener intersection

on the local model boundaries were taken as those values obtained for the panel skin.

Contour plots of the longitudinal stress resultant N, are shown in figure g superimposed

on the deformed global finite element model and undeformed local finite element models. The

distribution of the longitudinal stress resultant N_ in the panel skin nolznalized by the applied

running load (N,),,,,, 3 (i.e., applied load divided by the panel width) is shown in figure 6 as a

flmction of the lateral distance fl'om the center of the panel normalized by the radius of the

cutout. The solution fl'om a very refined global model is used as the reference solution. This

refined global model has the same level of refinement in the local regions as the independent

local models and has 8460 active degrees of fl'eedoln. The coarse global model solution provides

good agreement with the reference solution away from the cutout but underestimates (by 24%)

the stress concentration at the edge of tile cutout. The loom model analysis of the region

around tile cutout predicts normalized stress resultants within 1.4% of the reference solution in

the neighborhood of the cutout. The local model analysis of the skin-stiffener interface region

also agrees with the reference solution in predicting a higher gradient than the coarse global

model analysis. This inethod may be used to interrogate any other region of the subcomponent
as well.
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Plate with a Central Crack

An orthotropic plate which has a central crack and which is subjected to uniform tension

is used to demonstrate the coupled global/local analysis method. This problem is characterized

by a stress singularity at the crack tips. The remote tensile loading induces mode I crack

deformations. Accurate solutions are available in the literature (ref. 22) for this configuration.

The ratio of the plate half-length to the plate half-width, L, is 2 (see fig. 7). The ratio of

the crack half-length to the plate half-width, {, ranges from 0.125 to 0.75. It is assumed that

the material axes (1,2) are along the coordinate axes (x, y). The ratio of the Young's moduli,

-_y_-,is 0.1. The ratio of the shear modulus to the longitudinal Young's modulus , --_, is 0.8757

and Poisson's ratio, Vvz , is 0.21. Using the symmetries in the problem, one quarter of the plate

is modeled. The local area of interest is first isolated from the larger global model and two

separate finite element models (shown in fig. 8) are created: one for the global subdomain

which is very coarse, and one for the local subdomain which is considerably more refined to

delineate the stress gradient near the crack tip. The finite element nodes of the global aad local

models do not coincide at the global/local interface. The local model dimension is defined by

the parameter, H, shown in figure 7. A nine-node Assumed Natural-Coordinate Strain element

21 was used in this problem. This element has five degrees of freedom at each node (i.e., three

displacements, two bending rotations and no drilling degrees of freedom) and uses a strain

approximation to calculate the element stiffness matrix (which is equivalent to a a stiffness

matrix calculated using a selectively directionally reduced order of integration). A linear static

analysis is performed using the coupled global/local method to join these two incompatible finite
element models.

The stress intensity factors, K, were calculated fl'om the relationship

I/" = V_ (17)

where G is the strain-energy release rate and c is a constant defined in terms of the material

properties. The strain-energy release rate, G, is calculated by the virtual crack-closure technique

and for quadratic elements (ref. 23) is defined as

1

c = -s[Fivj+ + rj-ivj+,l (is)

where A is the element size at the crack tip, F i and Fj-1 are internal forces at the crack tip and

one node point ahead of the crack tip, respectively, and vj+l and v j+2 are the displacements at

the first and second node points behind the crack tip (i.e., on the crack face, see fig. 9). Note

that no special element (e.g., quarter-point or other singularity element) is used at the crack

tip. The value of c for orthotropic materials is given in reference 24 as

where

c = [ V A!I + 2All (19)

1 1 r,y_ and A_ - 1
All = _-_-, A22 = _, AI2 = - Ey' Gzy
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The stress intensity factors, K, normalized by a0v/'_'a are shown in figure 10 as a function

of the crack half-length to plate half-width ratio, _. The solid curve in the figure represents

the solution by Bowie (ref. 22). The open circles represent the stress intensity factors obtained

from the finite element analyses using the coupled global/local method. The calculated stress

intensity factors are in excellent agreement with the solution by Bowie (ref. 22).

An adaptive analysis is performed o n the plate with a central crack by again isolating the

local area of interest from the larger global model and creating two separate finite element

models: one for the global subdomain which is initially very coarse, and one for the local

subdomain which is also initially coarse. A linear static analysis is again performed using the

coupled global/local method to join the two incompatible finite element models. Refinement

indicators based on the energy norm of error, with a 5% error tolerance, are evaluated on Model

1 (shown on the upper left of fig. 11 with an enlarged local subdomain). These indicators

suggest that refinement of both the global and local models is required (darker shaded elements

on the figure indicate that refinement is needed). New models are generated automatically

for both global and local Subdomains (denoted Model 2 in the center of the upper portion of

the figure), an analysis is performed, and refinement indicators are evaluated. In subsequent

analyses, refinement is required only in the local subdomain of Models 2 and 3 as shown by the

refinement indicators in the figure. A new local model is automatically generated, the global

model is allowed to remain the same, and a fourth and final linear analysis is performed on

Model 4 (lower left of the figure). Although refinement indicators again suggest that refinement

is needed, the solution procedure is terminated. As the mesh becomes more refined in the

neighborhood of the crack tip, the solution is chiven to an increasingly better representation of

the singularity, thus the refinement will continue for this problem until user-terminated. The

transverse stress resultant, N_, along the width of the panel at the centerline (along the x

axis shown in fig. 7) is shown in figure 12 for each of the four models. The sequence of four

models generates increasing values of peak stress as the solution is driven to a better numerical

representation of infinity at the crack tip. The stress intensity factors predicted using the four

models are shown in figure 13 as a function of the number of degrees of freedom in each model.

The stress intensity factor increases and approaches the reference solution by Bowie 22 as the

number of degrees of freedom is increased. The stress intensity factor predicted by Model 4

(1605 degrees of freedom) is within 0.1% of the Bowie's solution.

Concluding Remarks

In summary, two computational methods for global/local analysis of structural components

have been described. The methods are uncoupled and coupled global/local analysis methods.

Also, methodology for automatic refinement of incompatible global and local models has been

developed. The effectiveness of the methods has been demonstrated using selected linear static

structural analysis applications, ..........

The uncoupled global/local analysis method presented herein reduces the analyst's compu-

tational effort and removes the restriction of having to know the regions requiring local detailed

stress analysis in advance. The coui)led global/local analysis method provides interaction be-

tween the global and local models. Both global/local methods described herein eliminate the

need for potentially complex transition modeling from highly-refined regions to regions with less

12



refinement and thus reduce the modeling effort. The global/local analysis capabilities provide

efficient strategies for predicting local detailed stress states using relatively coarse finite element

models in the far-field. The error detection and control strategy combined with the coupled

global/local analysis method has been shown to be an effective procedure for improving the

accuracy of global and local results. The combined procedure provides a modeling technique

for automatically refining incompatible global and local models.

The global/local analysis methods described and demonstrated herein, provide techniques

for predicting local detailed structural response. In addition, the use of these methods should

reduce the analyst's modeling effort and thus, should favorably impact the design process for

structural components.
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Figure 6.
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Figure 9. Forcesand Disl)hmementsnear the crack tip.
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